Modulators:
An acousto-optic modulator is made to vary the intensity of the incoming laser beam (Amplitude Modulation, AM). The modulation can be digital (ON/OFF) or analog (sine, square, linear, random…).
The key parameter of a modulator is its rise/fall time, which defines the achievable « speed » of the modulation, or amplitude modulation bandwidth. The rise/fall time is proportional to the beam diameter inside the modulator. As a consequence, the laser beam must be focused inside the modulator to reach a fast rise time.
Fixed Frequency Shifters:
An acousto-optic frequency shifter uses the frequency shift of the laser beam inherent to the acousto-optic interaction. The laser wavelength is frequency shifted by the amount of the carrier RF frequency. The frequency shift can be positive or negative, depending on the angular sketch configuration. Modulators are used as fixed frequency shifters
Model |
Material |
Wavelength (nm) |
Aperture (mmxmm) |
Freq (Shift) (MHz) |
Polarisation |
Rise Time (ns)* |
Modul. BW MHz (AM) |
Diffraction Efficiency (%)** |
Associated RF drivers |
MQ200-A1,5-244.266.Br |
Fused silica |
244-266 |
1,5 x 2 |
200 |
Linear |
60 |
8 |
85 |
MODAxx |
MQ200-A1,5-266.300 |
Fused silica |
266-300 |
1,5 x 2 |
200 |
Linear |
60 |
8 |
85 |
MODAxx |
MQ180-A0,2-266.300 |
Fused silica |
266-300 |
0,2 x 1 |
180 |
Linear |
10 |
48 |
85 |
MODAxx |
MQ180-A0,2-UV |
Fused silica |
325-425 |
0,2 x 1 |
180 |
Linear |
10 |
48 |
80 |
MODAxx |
MQ110-A3-UV |
Fused silica |
325-425 |
3 x 3 |
110 |
Linear |
50 |
10 |
90 |
MODAxx |
MQ240-A0,2-UV |
Fused silica |
325-425 |
0,2 x 1 |
240 |
Linear |
6 |
80 |
70 |
MODAxx |
MQ180-A0,25-VIS |
Fused silica |
440-650 |
0,25 x 1 |
180 |
Linear |
10 |
48 |
70 |
MODAxx |
MCQ110-A2-VIS |
Quartz |
488-633 |
2 x 2 |
110 |
Linear |
50 |
8 |
85 |
MODAxx |
MT350-A0.12-VIS |
TeO2 |
450-700 |
0,12 x 1 |
350 |
Linear |
5 |
96 |
80 |
MODAxx |
MT250-A0.5-VIS |
TeO2 |
450-700 |
0,5 x 2 |
250 |
Linear |
6 |
80 |
85 |
MODAxx |
MT200-A0.5-VIS |
TeO2 |
450-700 |
0,5 x 2 |
200 |
Linear |
8 |
60 |
85 |
MODAxx |
MT110-A1-VIS |
TeO2 |
450-700 |
1 x 2 |
110 |
Linear |
15 |
32 |
85 |
MODAxx |
MT110-A1.5-VIS |
TeO2 |
450-700 |
1,5 x 2 |
110 |
Linear |
50 |
9 |
85 |
MODAxx |
MT80-A1-VIS |
TeO2 |
450-700 |
1 x 2 |
80 |
Linear |
23 |
21 |
85 |
MODAxx |
MT80-A1.5-VIS |
TeO2 |
450-700 |
1,5 x 2 |
80 |
Linear |
50 |
9 |
85 |
MODAxx |
MTS110-A3-VIS |
TeO2 |
458-633 |
3 x 3 |
110 |
Linear |
1000 |
0,4 |
85 |
MODAxx |
MTS40-A2-532.700-M002 |
TeO2 |
532-700 |
2 x 2 |
40 |
Linear |
1000 |
0,4 |
85 |
MODAxx |
MTS40-A3-750.850 |
TeO2 |
750-850 |
3 x 3 |
40 |
Linear |
1000 |
0,4 |
85 |
MODAxx |
MT110-B50A1.5-IR-Hk |
TeO2 |
690-1064 |
1,5 x 2 |
110 +/- 25 |
Linear |
50 |
9 |
80 |
MPDSnC-xx |
MT110-B69A1.5-680.1300-Lfv-Hk |
TeO2 |
680-1300 |
1,5 x 2 |
110 +/- 34.5 |
Linear |
50 |
9 |
80 |
MPDSnC-xx |
MT350-A0.12-800 |
TeO2 |
700-950 (1100) |
0,12 x 1 |
350 |
Linear |
5 |
96 |
80 |
MODAxx |
MT250-A0.5-VIS |
TeO2 |
700-950 (1100) |
0,5 x 2 |
250 |
Linear |
6 |
80 |
80 |
MODAxx |
MT200-A0.5-800 |
TeO2 |
700-950 (1100) |
0,5 x 2 |
200 |
Linear |
8 |
60 |
85 |
MODAxx |
MT110-A1-IR |
TeO2 |
700-950 (1100) |
1 x 2 |
110 |
Linear |
15 |
32 |
85 |
MODAxx |
MT110-A1.5-IR |
TeO2 |
700-950 (1100) |
1,5 x 2 |
110 |
Linear |
50 |
9 |
85 |
MODAxx |
MT80-A1-IR |
TeO2 |
700-950 (1100) |
1 x 2 |
80 |
Linear |
23 |
21 |
85 |
MODAxx |
MT80-A1.5-IR |
TeO2 |
700-950 (1100) |
1,5 x 2 |
80 |
Linear |
50 |
9 |
85 |
MODAxx |
MT200-A0.5-1064 |
TeO2 |
980-1100 |
0,4 x 2 |
200 |
Linear |
8 |
60 |
80 |
MODAxx |
MT200-A0.2-1064 |
TeO2 |
980-1100 |
0,2 x 1 |
200 |
Linear |
8 |
60 |
80 |
MODAxx |
MT110-A1-1064 |
TeO2 |
980-1100 |
1 x 2 |
110 |
Linear |
15 |
32 |
85 |
MODAxx |
MT80-A1-1064 |
TeO2 |
980-1100 |
1 x 2 |
80 |
Linear |
23 |
21 |
85 |
MODAxx |
MT80-A1.5-1064 |
TeO2 |
980-1100 |
1,5 x 2 |
80 |
Linear |
50 |
9 |
85 |
MODAxx |
MTS80-A3-1064Ac |
TeO2 |
1030-1080 |
3 x 3 |
80 |
Linear |
500 |
1 |
85 |
MODAxx |
MQ80-A0.7-L1030.1064-Z20 |
SiO2 |
1030-1080 |
0.7 x 1 |
80 |
Linear |
120 |
14 |
85 |
MODAxx
QMODP0xx |
MQ40-A3-L1064-W |
SiO2 |
1030-1080 |
3 x 3 |
40 |
Linear |
120 |
4 |
85 |
MODAxx
QMODP1xx |
MCQ40-A1.5-L1064-Z32-Cxxx |
Quartz |
1030-1080 |
1.5 x 1.5 |
40 |
Linear |
80 |
6 |
85 |
MODAxx
QMODP0xx |
MCQ80-A2-L1064-Z32-Cxxx |
Quartz |
1030-1080 |
2 x 2 |
80 |
Linear |
80 |
6 |
85 |
MODAxx
QMODP0xx |
MGAS40-A1 |
Dopped Glass |
1300-1600 |
1 x 2 |
40 |
Random |
50 |
10 |
85 |
MODAxx |
MGAS80-A1 |
Dopped Glass |
1300-1600 |
1 x 2 |
80 |
Random |
50 |
10 |
85 |
MODAxx |
MGAS110-A1 |
Dopped Glass |
1300-1600 |
1 x 2 |
110 |
Random |
25 |
20 |
85 |
MODAxx |
MT80-A0,7-1300.1600 |
TeO2 |
1300-1600 |
0.7 x 3 |
80 |
Linear |
80 |
6 |
65 |
MODAxx |
MT80-A0,4-2000 |
TeO2 |
1900-2100 |
0.4 x 1 |
80 |
Linear |
25 |
20 |
65 |
MODAxx |
MG40-A6-9300 |
Germanium |
9300 |
6 x 10 |
40 |
Linear |
120 |
4 |
75 |
MODAxx
QMODP1xx |
MG40-A8-9300 |
Germanium |
9300 |
8 x 10 |
40 |
Linear |
120 |
4 |
75 |
MODAxx
QMODP1xx |
MG40-A6-10600 |
Germanium |
10600 |
6 x 10 |
40 |
Linear |
120 |
4 |
75 |
MODAxx
QMODP1xx |
MG40-A8-10600 |
Germanium |
10600 |
8 x 10 |
40 |
Linear |
120 |
4 |
75 |
MODAxx
QMODP1xx |
fiber pigtailed devices
Compact Fibre Aoms For Industry
VIS range (400-700 nm)
NIR range (780-870 nm)
IR range (980-1100 nm)
IIR range (1250-1650 nm)
Fiber lasers
Model |
Wavelength(nm)* |
Fiber Type |
Configuration** |
Frequency Shift (MHz)*** |
Rise Time (ns) |
Max Laser Power (W) |
Insertion Losses (dB) |
Associated RF driver |
MT80-FIR40-Fio-xx |
1850-2100 |
SM, PM |
2 ports |
80 |
<40 |
0.5 or 5 |
4 |
MODAxx |
* All fiber pigtailed devices are optimized at factory for a single wavelength
** 2 Ports: INPUT -pigtailed + 1st Order OUTPUT pigtailed, 3 Ports: INPUT + 0 order + 1st order pigtailed, On request: INPUT -pigtailed + 0 Order OUTPUT pigtailed
*** Down shift available on request
A fiber laser or fibre laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neody- mium, dysprosium, praseodymium, and thulium. Fiber nonlinearities, such as Stimulated Raman Scattering or Four Wave Mixing can also provide gain and thus serve in effect as gain media. Unlike most other types of lasers, the laser cavity in fiber laser is constructed monolithically by fusion splicing the different types of fibers; most notably fiber Bragg gratings replace here conventional dielectric mirrors to provide optical feedback.
To pump fiber lasers, semiconductor laser diodes or other fiber lasers are used almost exclusively. Fiber lasers can have several kilometer-long active regions and provide very high optical gain. They can support kilowatt level of continuous output power because the fiber’s high surface area to volume ratio allows efficient cooling. The fiber waveguiding properties reduce or remove completely thermal distortion of the optical path thus resulting in typically dif- fraction-limited&